HyInHeat project introduction

The project in brief

Title:	Hydrogen technologies for decarbonization of industrial heating processes
Acronym:	HyInHeat
GAP No.:	101091456
Call:	HORIZON-CL4-2022-TWIN-TRANSITION-01-17
Start/End:	01/01/2023 to 31/12/2026 (48 months)
Total budget:	23.96 Mio. €
EU contribution:	17,71 Mio. €
Coordinator:	RWTH Aachen University


Overall goals

- 1 Significant reduction of CO_2 emissions of the industrial processes with H_2 heating
- 2 NO_x levels of the processes at least not higher than the equivalent fossil fuel based solutions
- 3 Improved energy efficiency of the industrial processes
- 4 Significant reduction of H₂ fuel consumption of the developed process with regards to the current fossil fuel demand
 - Competitive costs of the developed technologies

The team

- 3 Steel and 5 Aluminium producers
- 9 Technology suppliers
- 4 Research and Technology organisations
- 4 Universities
- 2 European associations
- 1 Green Innovation Consultant & Marketing
 expert
- In total: 28 partners from 12 countries

The partners

The challenges

Gas-solid or gas-liquid interactions between furnace atmosphere and product | impact on refractory products and furnace materials | condensation of off-gas | heat transfer and temperature homogeinity | high-temperature chemistry for H2/O2 combustion | feed-forward and feed-back combustion control | higher combustion temperatures | higher NOx formation rates | NOx emission limit definition | emission measurement technology | safety and risk assessment | flame detection and monitoring

"HyInHeat uses a cross-sectorial approach addressing all the crucial tasks for an energyand ressource efficient integration of H_2 in two large European sectors, Steel and Aluminium, to be an integral part of the heating solutions throughout the processes of the value chains of the two sectors"

The objectives

Redesign heating processes for H₂ as fuel

8 demonstrators for H_2 heating | 1 full off-gas system redesign | 1 greenfield reheating furnace design study | 2 retrofit design studies

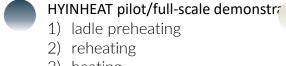
Modify heating equipment and infrastructure for use of H₂

4 burner modifications and optimizations | measurement instrumentation development for fuel supply and combustion control $| H_2$ compatible fuel supply implementation | refractory investigation and optimization

Develop O₂ combustion processes to improve efficiency

6 demonstrators with pure O₂ as oxidizer | 1 demonstrator with oxygen-enhanced combustion

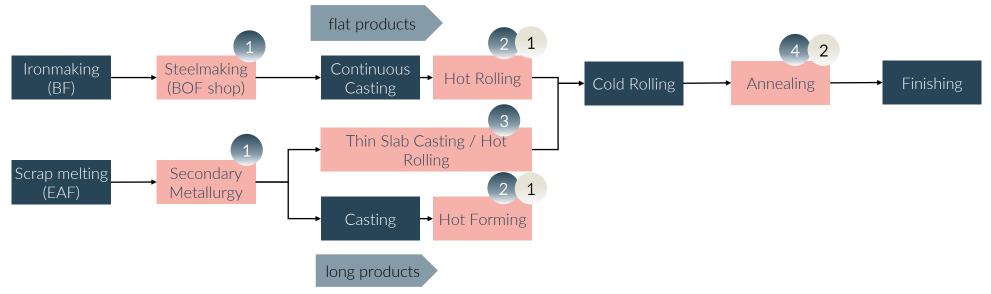
Integrate instrumentation to characterize fuel composition & flow


2 measurement technologies for fuel quality | combustion control instrumentation development | NOx emission measurement technology development | predictive emission monitoring

Prove economic viability compared to heating alternatives

Demonstrators as baseline | comparison on basis of KPIs | individual business case evaluation

Value chain


Production processes Steel sector

- 3) heating
- 4) annealing or galvanizing
- 5) liquid metal transfer
- 6) remelting / holding
- 7) refining
- 8) annealing

: HYINHEAT full-scale design studies:

- 1) reheating
- 2) annealing or galvanizing
- 3) remelting / holding
- 4) homogenizing and reheating

Value chain

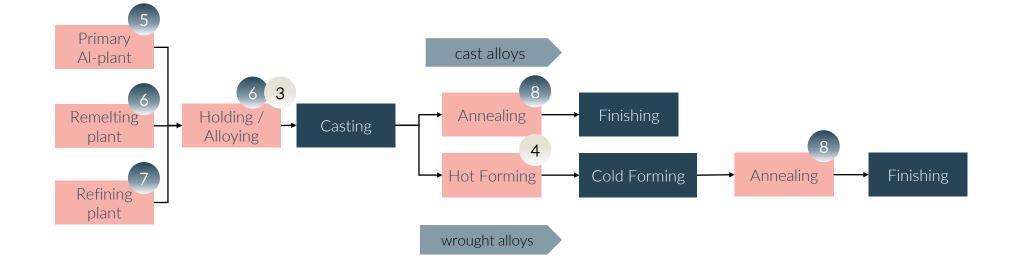
1) ladle preheating

Production processes Aluminium sector

HYINHEAT pilot/full-scale demonstr

: HYINHEAT full-scale design studies:

- 1) reheating
 - 2) annealing or galvanizing
 - 3) remelting / holding
 - 4) homogenizing and reheating


5) liquid metal transfer

4) annealing or galvanizing

- 6) remelting / holding
- 7) refining

2) reheating
 3) heating

8) annealing

The demonstrators – part 1

Industrial size reverberatory melting furnaceAlC-Tec, Voreppe, France | aluminium scrap remelting | retrofit from NG/O2 to H_2/O_2 burner technology | 6.2 kt CO2 saving for 50 kt/a remelting capacity

Pilot rotary melting furnaceAlBefesa, Valladolid, Spain | aluminium scrap refining furnace | retrofit from NG/airto H_2/O_2 burner technology | 2.7 kt CO2 savings for 40.5 kt/a refining capacity

Pilot radiant tube furnace

ArcelorMittal, Gijón, Spain | heat treatment for steel/aluminium | retrofit from NG/air to H_2 /air burner technology | 31.0 kt CO₂ savings for 550 kt/a hot dip galvanizing line

Pilot walking beam furnace

SWERIM, Lulea, Sweden | steel reheating for hot rolling | retrofit from light oil/air to H2/air/O2 burner technology | 386 kt/a CO2 savings for 3100 kt/a reheating frunace

The demonstrators – part 2

Industrial liquid metal transfer heaterAlMytilineos, Agios Nikolaos, Greece | liquid aluminium transfer | retrofit fromNG/air to H_2/O_2 burner technology | 0.3 kt/a CO2 savings

Industrial ladle preheating stationFeCelsa Nordic, Mo i Rana, Norway | steel ladle preheating | retrofit from NG/airto H_2/O_2 burner technology | 5.7 kt CO2 savings for 350 kt/a steel plant

Industrial tunnel heating furnace

Arcelor Mittal, Sestao, Spain | steel thin slab heating | retrofit from NG/air to H_2 /air burner technology | 90.0 kt CO₂ savings for 1600 kt/a steel coil

Industrial annealing furnace

Toyota, Walbrzych, Poland | aluminium part heat treatment | retrofit from NG/air to H_2/O_2 burner technology | 0.1 kt/a CO₂ savings

The Workplan

- 9 work packages
- Phase 1: Technology development and adaption
- Phase 2: Implementation and validation
- Phase 3: Evaluation and analysis
- Accompanying dissemination and exploitation
- Consistent project and risk management

Phase 1	Phase 2	Phase 3
 ss analysis and itting requirements : fication and redesign upment and sses : n of safe and efficient d O₂ infrastructure : umentation and thms for urement and control 	 WP 5: Demonstration of H₂ heating solutions in aluminium production processes WP 6: Demonstration of H₂ heating solutions in steel production processes 	WP 7 Evalua green retrof solutio
WP 8: Communi	cation, policy and exploitatior	ו
WP 9: Project coordi	nation, management and repo	orting

WP 1:

Proces

WP 2

Modif of equ

proce

WP 3: Desig

 H_2 an

WP 4 Instru

algori

S HYINHEAT

The timing

WP No. Work Package	Lood	2023				2024				2025				2026				
	work Package	Lead	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Process analysis and retrofitting requirements	TECNALIA																
2	Modification and redesign of equipment and processes	LINDE																
3	Design of safe and efficient H ₂ and O ₂ infrastructure	POLIMI																
4	Instrumentation and algorithms for measurement and control	SICK																
5	Demonstration of H ₂ heating solutions in aluminium production processes	GHI																
6	Demonstration of H ₂ heating solutions in steel production processes	CELSA																
7	Evaluation of greenfield and retrofitting solutions	NTNU																
8	Communication, policy and exploitation	EGEN																
9	Project coordination, management and reporting	RWTH																

